The impact of denoising on independent component analysis of functional magnetic resonance imaging data.
نویسندگان
چکیده
Independent component analysis (ICA) is a suitable method for decomposing functional magnetic resonance imaging (fMRI) activity into spatially independent patterns. Practice has revealed that low-pass filtering prior to ICA may improve ICA results by reducing noise and possibly by increasing source smoothness, which may enhance source independence; however, it eliminates useful information in high frequency features and it amplifies low signal fluctuations leading to independence loss. On the other hand, high-pass filtering may increase the independence by preserving spatial information, but its denoising properties are weak. Thus, such filtering strategies did not lead to simultaneous enhancements in independence and noise reduction; therefore, band-pass filtering or more sophisticated filtering methods are expected to be more appropriate. We used advanced wavelet filtering procedures, such as wavelet-based methods relying upon hard and soft coefficient thresholding and non-stationary Gaussian modelling based on geometrical prior information, to denoise artificial and real fMRI data. We compared the performance of these methods with the performance of traditional Gaussian smoothing techniques. First, we demonstrated both analytically and empirically the consistent performance increase of spatial filtering prior to ICA using spatial correlation and statistical sensitivity as quality measures. Second, all filtering methods were computationally efficient. Finally, denoising using low-pass filters was needed to improve ICA, suggesting that noise reduction may have a more significant effect on the component independence than the preservation of information contained within high frequencies.
منابع مشابه
Software Tools for the Analysis of Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. ...
متن کاملAnalysis of Memory-Related Brain Activation Maps in Sleep-Depriveation using Functional Magnetic Resonance Imaging
Background and purpose: Insomnia is a common sleep disorder with negative consequences such as decreased quality of life. In this study, the effect of sleep deprivation on memory in both young and older adults was investigated using functional magnetic resonance imaging (fMRI). Materials and methods: In this retrospective study, fMRI data of 40 healthy subjects (17 young and 23 older people) w...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملRepeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 213 1 شماره
صفحات -
تاریخ انتشار 2013